Mixed Linear Complementarity Problem Problems

Chris Hecker 〈checker@d6.com〉

May 27, 2001

1 Introduction

This is a little note showing a problem with solving linear programs (LPs) with no nonnegativity constraints by converting them to mixed linear complementarity problems (MLCPs) and running the MLCP through Lemke's Algorithm.

2 LP \rightarrow MLCP Conversion

Here's the LP we're working with:

$$
\begin{gather*}
\min c^{T} x \tag{1}\\
A x \geq b
\end{gather*} \quad \text { where } \quad A=\left(\begin{array}{rr}
1 & 5 \\
5 & -1 \\
-1 & -1
\end{array}\right), \quad b=\left(\begin{array}{c}
-15 \\
-11 \\
4
\end{array}\right), \quad c=\binom{1}{10}
$$

Note that there is no $x \geq 0$ constraint, and in fact, the solution has both components of x negative.

The solution to this LP^{1} is

$$
x=\binom{-5 / 4}{-11 / 4} .
$$

To convert this LP into a MLCP, we use the KKT optimality conditions

$$
\begin{aligned}
u=c-A^{T} y & =0 \\
v=A x-b & \geq 0 \\
(v, y) & \geq 0 \\
\text { and } v^{T} y & =0 .
\end{aligned}
$$

They give us the MLCP

$$
\binom{u}{v}=\left(\begin{array}{cc}
0 & -A^{T} \tag{2}\\
A & 0
\end{array}\right)\binom{x}{y}+\binom{c}{-b},(v, y) \geq 0, u=0, \text { and } x \text { free. }
$$

[^0]
3 Lemke's Algorithm

The inital tableau for Lemke's Algorithm for the MLCP (2) is

	1	z_{0}	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}
u_{1}	1	$-\frac{1}{4}$	0	0	-1	-5	1
u_{2}	10	$-\frac{5}{2}$	0	0	-5	1	1
v_{1}	15	1	1	5	0	0	0
v_{2}	11	1	5	-1	0	0	0
v_{3}	-4	1	-1	-1	0	0	0

The components of covering vector for the artificial variable (z_{0}) that correspond to the nonnegativity-constrained basic variables (v_{1}, v_{2}, and v_{3}) are 1 , as usual. In this tableau, z_{0} will be driven to 4 to create an initial feasible solution by driving v_{3} to 0 . I've chosen the u components of the covering vector to bring u_{1} and u_{2} to 0 during this drive, as they should be for a feasible solution. I just made this up, and I have no idea if it's the right thing to do, so this may part of the problem I outline below.

Regardless, our first pivot is $\left\langle v_{3}, z_{0}\right\rangle$.

	1	v_{3}	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}
u_{1}	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	-1	-5	1
u_{2}	0	$-\frac{5}{2}$	$-\frac{5}{2}$	$-\frac{5}{2}$	-5	1	1
v_{1}	19	1	2	6	0	0	0
v_{2}	15	1	6	0	0	0	0
z_{0}	4	1	1	1	0	0	0

The complement of v_{3} is y_{3}, and we're left with a quandry. Driving y_{3} will not increase any of the nonnegative variables because their tableau entries are 0. Driving y_{3} will cause the u variables to become non- 0 , however, so we need to pivot one of them into the nonbasic set. But which one? Note that we've numbered this tableau (3) and we'll refer to it later.

Let's pick u_{2}, for reasons that will become obvious. So, we pivot $\left\langle u_{2}, y_{3}\right\rangle$.

	1	v_{3}	x_{1}	x_{2}	y_{1}	y_{2}	u_{2}
u_{1}	0	$\frac{9}{4}$	$\frac{9}{4}$	$\frac{9}{4}$	4	-6	1
y_{3}	0	$\frac{5}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	5	-1	1
v_{1}	19	1	2	6	0	0	0
v_{2}	15	1	6	0	0	0	0
z_{0}	4	1	1	1	0	0	0

The next complement is x_{2}. The only option for pivoting is u_{1}, since driving x_{2} will make it non- 0 . So, we pivot $\left\langle u_{1}, x_{2}\right\rangle$.

	1	v_{3}	x_{1}	u_{1}	y_{1}	y_{2}	u_{2}
x_{2}	0	-1	-1	$\frac{4}{9}$	$-\frac{16}{9}$	$\frac{8}{3}$	$-\frac{4}{9}$
y_{3}	0	0	0	$\frac{10}{9}$	$\frac{5}{9}$	$\frac{17}{3}$	$-\frac{1}{9}$
v_{1}	19	-5	-4	$\frac{8}{3}$	$-\frac{32}{3}$	16	$-\frac{8}{3}$
v_{2}	15	1	6	0	0	0	0
z_{0}	4	0	0	$\frac{4}{9}$	$-\frac{16}{9}$	$\frac{8}{3}$	$-\frac{4}{9}$

x_{1} is now our driving variable. The blocking variable is $v_{1}\left(x_{2}\right.$ is free so it can't block us), so we pivot $\left\langle v_{1}, x_{1}\right\rangle$.

	1	v_{3}	v_{1}	u_{1}	y_{1}	y_{2}	u_{2}
x_{2}	$-\frac{19}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{2}{9}$	$\frac{8}{9}$	$-\frac{4}{3}$	$\frac{2}{9}$
y_{3}	0	0	0	$\frac{10}{9}$	$\frac{5}{9}$	$\frac{17}{3}$	$-\frac{1}{9}$
x_{1}	$\frac{19}{4}$	$-\frac{5}{4}$	$-\frac{1}{4}$	$\frac{2}{3}$	$-\frac{8}{3}$	4	$-\frac{2}{3}$
v_{2}	$\frac{87}{2}$	$-\frac{13}{2}$	$-\frac{3}{2}$	4	-16	24	-4
z_{0}	4	0	0	$\frac{4}{9}$	$-\frac{16}{9}$	$\frac{8}{3}$	$-\frac{4}{9}$

Now we're driving y_{1}, and we do a minimum ratio test between z_{0} and v_{2}, and the winner is $z_{0}\left(\min \left\{\frac{4}{16 / 9}, \frac{87 / 2}{16}\right\}=\frac{4}{16 / 9}=9 / 4\right)$. So, we pivot $\left\langle z_{0}, y_{1}\right\rangle$.

	1	v_{3}	v_{1}	u_{1}	z_{0}	y_{2}	u_{2}
x_{2}	$-\frac{11}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{2}$	0	0
y_{3}	$\frac{5}{4}$	0	0	$\frac{5}{4}$	$-\frac{5}{16}$	$\frac{13}{2}$	$-\frac{1}{4}$
x_{1}	$-\frac{5}{4}$	$-\frac{5}{4}$	$-\frac{1}{4}$	0	$\frac{3}{2}$	0	0
v_{2}	$\frac{15}{2}$	$-\frac{13}{2}$	$-\frac{3}{2}$	0	9	0	0
y_{1}	$\frac{9}{4}$	0	0	$\frac{1}{4}$	$-\frac{9}{16}$	$\frac{3}{2}$	$-\frac{1}{4}$

Since we just pivoted z_{0} into the nonbasic set, we're done. We pick out the solution $x_{1}=-5 / 4, x_{2}=-11 / 4$ as expected (or hoped). It worked!

But wait!

4 Choosing a Different Path

Back in tableau (3), we made the arbitrary choice to pivot $\left\langle u_{2}, y_{3}\right\rangle$ instead of $\left\langle u_{1}, y_{3}\right\rangle$. As far as I can tell from looking at the tableau or the history up to that point, there's no reason to pick one or the other. Here's the tableau again for convenience:

	1	v_{3}	x_{1}	x_{2}	y_{1}	y_{2}	y_{3}
u_{1}	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	-1	-5	1
u_{2}	0	$-\frac{5}{2}$	$-\frac{5}{2}$	$-\frac{5}{2}$	-5	1	1
v_{1}	19	1	2	6	0	0	0
v_{2}	15	1	6	0	0	0	0
z_{0}	4	1	1	1	0	0	0

Let's look at what happens when we pivot $\left\langle u_{1}, y_{3}\right\rangle$ instead.

	1	v_{3}	x_{1}	x_{2}	y_{1}	y_{2}	u_{1}
y_{3}	0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1	5	1
u_{2}	0	$-\frac{9}{4}$	$-\frac{9}{4}$	$-\frac{9}{4}$	-4	6	1
v_{1}	19	1	2	6	0	0	0
v_{2}	15	1	6	0	0	0	0
z_{0}	4	1	1	1	0	0	0

Now the driving complement of u_{1} is x_{1}, so we must pivot $\left\langle u_{2}, x_{1}\right\rangle$ to keep u_{2} from becoming non- 0 .

	1	v_{3}	u_{2}	x_{2}	y_{1}	y_{2}	u_{1}
y_{3}	0	0	$-\frac{1}{9}$	0	$\frac{5}{9}$	$\frac{17}{3}$	$\frac{10}{9}$
x_{1}	0	-1	$-\frac{4}{9}$	-1	$-\frac{16}{9}$	$\frac{8}{3}$	$\frac{4}{9}$
v_{1}	19	-1	$-\frac{8}{9}$	4	$-\frac{32}{9}$	$\frac{16}{3}$	$\frac{8}{9}$
v_{2}	15	-5	$-\frac{8}{3}$	-6	$-\frac{32}{3}$	16	$\frac{8}{3}$
z_{0}	4	0	$-\frac{4}{9}$	0	$-\frac{16}{9}$	$\frac{8}{3}$	$\frac{4}{9}$

The next complement is x_{2}, and v_{2} is the blocking variable. So, we pivot $\left\langle v_{2}, x_{2}\right\rangle$.

	1	v_{3}	u_{2}	v_{2}	y_{1}	y_{2}	u_{1}
y_{3}	0	0	$-\frac{1}{9}$	0	$\frac{5}{9}$	$\frac{17}{3}$	$\frac{10}{9}$
x_{1}	$-\frac{5}{2}$	$-\frac{1}{6}$	0	$\frac{1}{6}$	0	0	0
v_{1}	29	$-\frac{13}{3}$	$-\frac{8}{3}$	$-\frac{2}{3}$	$-\frac{32}{3}$	16	$\frac{8}{3}$
x_{2}	$\frac{5}{2}$	$-\frac{5}{6}$	$-\frac{4}{9}$	$-\frac{1}{6}$	$-\frac{16}{9}$	$\frac{8}{3}$	$\frac{4}{9}$
z_{0}	4	0	$-\frac{4}{9}$	0	$-\frac{16}{9}$	$\frac{8}{3}$	$\frac{4}{9}$

Finally, our driving variable is now y_{2}, the complement of v_{2}. However, y_{2} is unblocked by all basic variables, so we have a secondary ray termination!

5 Questions

1. Was the inital assumption to use z_{0} to drive u_{1} and u_{2} to 0 the correct one?
2. If so, what went wrong here? Was there a good reason to choose the u_{2} pivot in (3), which led to the correct answer, over the u_{1} pivot, which led to a secondary ray termination?
3. Is this even remotely the way to solve MLCPs? I haven't been able to find a single paper or reference about the actual implementation of a modified Lemke solver for MLCPs, even though everyone says it's trivial.
4. Did I make some stupid mistake and I'm missing something obvious?

[^0]: ${ }^{1}$ Incidentally, this LP was generated by moving the nonnegative LP with $b=\left(\begin{array}{ll}3 & 1\end{array}-2\right)^{T}$ (which is the original LP I sent mail about on 5/24/2001) into the third quadrant by translating x by $(-3-3)^{T}$.

