
Attention:

This material is copyright  1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

More Compiler
Results, and What
To Do About It

B E H I N D T H E S C R E E N
I
sure am glad my full-time job isn’t
reviewing compilers, because their
ubiquitous bugs and wacky user
interfaces would drive me insane.
However, evaluating compilers does
have its moments, like when I found
the following paragraph in the Wat-
com 10.6 compiler’s help file under

the heading, “What you should know
about optimization”:

“The C/C++ language contains fea-
tures which allow simpler compilers to
generate code of reasonable quality. Reg-
14 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

Figure 1. The Timing Results
ister declarations and imbedding [sic]
assignments in expressions are two of the
ways that C allows the programmer to
“help” the compiler generate good quality
code. An important point about the Wat-
com C/C++ compiler is that it is not as
important (as it is with other compilers)
to “help” the compiler. In order to make
good decisions about code generation, the
Watcom C/C++ compiler uses modern
optimization techniques.”

Considering Watcom did around
the fourth worst overall in my simple per-
http://www.gdmag.com
formance test, and did a bad job compil-
ing the texture mapper as well, it would
behoove the Watcom compiler writers to
refrain from reading their own help files
and get back to work on those “modern
optimization techniques.” Of course, I
shouldn’t single out Watcom for abuse
just because they handed me a convenient
passage in their help files. Just like my last
article “PowerPC Compilers: Still Not So
Hot” (Behind the Screen, June/July
1996), all the compilers this time around
deserve abuse, so let’s get to it.

The Contestants
This month, we’ll finish up my two-part
series on compiler optimizations. Last
issue, I evaluated a bunch of C++ com-
pilers for the Macintosh PowerPC plat-
form, and this time I’ll do the same for
the current crop of x86 compilers. I hesi-
tate to call these “reviews” since I’m not
completely evaluating every compiler fea-
ture or every possible optimization.
However, unlike most compiler review-
ers, I’m actually focusing on the compil-
er—you know, that tiny part of the
200MB Integrated Development Plat-
form and Suite of Accompanying Visual
Applications that actually generates the
computer code for your application. I’m
assuming that since you’re reading this
magazine you’re interested in fast code,
and the compiler’s the part of the above-
mentioned 200MB that generates (or, as
we’ll see, doesn’t generate) that fast code.

This month will be slightly more
than an x86 version of last issue’s col-
umn, however. I’ll quickly recap the test
results and then move on to what the
results from the two articles mean to
you as a performance-oriented game
programmer.

Chris Hecker finishes

up his two-part

series on compiler

optimizations and

interprets what the

test results mean

to you as a

performance-oriented

game programmer.

Chris Hecker

 refer

111.7
112.1
85.7

146.4
245.2

145
214.3
95.5

182.6
72.4

400.3
39.5

Opt.
3

I tested eight compilers this time
around: Microsoft Visual C++ 4.0, the
beta 4 of IBM’s VisualAge for C++ for
Windows V3.5, Borland C++ 5.0, Wat-
com C++ 10.6, Metaware C++ 3.32 for
OS/2, Metrowerks CodeWarrior 8 in
x86 cross-compilation mode, the Free
Software Foundation’s gcc 2.7.2 on
Linux, and Symantec C++ 7.2.

Table 1 shows the eight compilers
and their results on my test programs,
plus one extra row for both Microsoft
VC++ and gcc with different command-
line switches. I also included one extra
row for Borland using the Intel optimiz-
ing backend they supply, and just for
kicks I’ve included the results from the
Motorola PowerPC compiler from last
time. The timing numbers are in clock
cycles per iteration of the test loop, on
my 133Mhz Pentium. The PowerPC
results are on my 132Mhz PPC604, so

Note: For source code and optimizations,

MSCV (no aliasing)�
MSVC

IBM�
Watcom�
Borland

Borland w/Intel�
Symantec�
GNU gcc unroll�
GNU gcc no unroll�
Metaware�
CodeWarrior x86�
Motorola PPC

105.9�
106.1�

86�
136.4�
181.1�
75.9�

239.7�
67.2�

127.6�
65.1�

309.3�
34.5

116.3�
116.5�
81.9�

161.4�
224.9�
99.7�

263.8�
87.4�

166.9�
74.8�

331.3�
47.4

Listing�
1

Opt.

2

Table 1. The Timing Results
it’s a pretty fair comparison. I realized
after writing the last column that a table
full of numbers doesn’t exactly tell the
most interesting story, so Figure 1 is a
graph of Table 1.

The Test
To test the x86 compilers, I used the
same simple product of a three-by-three
matrix and an array of three element
vectors that I used on the PowerPC
compilers. Listing 1 shows the first
attempt at the code and corresponds to
the first column of Table 1. As you
move across the table, each column rep-
resents a new optimization I applied to
the base code in an attempt to coax rea-
sonable output from the compilers. The
compilers did pretty poorly on Listing 1;
most were two to three times slower on
it than on their fastest code, which was
usually attained on the function in List-

 to the June/July 1996 issue.

�
�
�
�
�
�
�
�
�
�
�

42.1�
42.8�
85.8�
81.9�

153.1�
47.7�

172.5�
57.4�
75.7�
72.6�

230.9�
33.2

Opt.

4

36.3�
47.1�
64.5�
69.5�
91.9�
46.4�

130.2�
62.3�
59.6�
51.9�

147.7�
30.8

Opt.

5

36.3�
44.4�
59.6�
65.6�
98.1�
35.4�
129�
59.3�
52.6�
66.4�

155.8�
20.6

Listing�
2

45.6�
46.4�
45.6�
79.6�

108.84�
37.5�

111.9�
51.6�

53�
53.9�

137.9�
15.5

Opt.

7

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 15http://www.gdmag.com

B E H I N D T H E S C R E E N
ing 2 and whose results are recorded in
the fifth column.

I’m not going to explain the differ-
ent test programs in detail because I cov-
ered that last time. For the complete story
and an explanation of the weird variable
names in Listing 2, pick up the June/July
1996 issue. The final column of Table 1
shows the results of applying the opti-
mization mentioned in the last paragraph
of that article to Listing 2.

In brief, the same criticism I leveled
on the PowerPC compilers applies to the
x86 compilers: you have to spoon-feed
them already optimized code to get rea-
sonable results.

The biggest difference between the
PowerPC compilers and x86 compilers is
that while you can coax a bad PowerPC
optimizer (such as Symantec’s PowerPC
compiler) into producing almost-optimal
code, the same was not true of the bad
x86 optimizers (such as Symantec, Bor-
land, and CodeWarrior). I believe gener-
ating good PowerPC floating-point code
is relatively straightforward compared to
generating good x86—and especially
Pentium—floating-point code. The
wackiness of the Pentium Floating-Point
Unit (FPU), with its FXCHes, stack-based
operands, and stalls, makes optimizing
difficult for the x86 compilers. Of course,
you’ll notice the difference in cycle counts
between the PowerPC and x86 tests. My
132Mhz PPC604 is twice as fast as my
133Mhz Pentium at running this code.
The speed difference is due to the flat
register-based, floating-point architecture
of the PowerPC, combined with a qua-
16 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

Listing 1. The Initial Code
ternary multiply-accumulate instruction.
“Quaternary” instructions have four
operands (d = a * b + c in the case of a
multiply-accumulate); contrast this with
the pathetic stack-based binary x86
instructions, where the compiler is forced
to constantly move operands around, and
you can see why there’s a huge difference.
Too bad about that annoying market
share thing, huh?

It’s always a good idea to try to cal-
culate the optimal cycle count for your
functions to see what kind of performance
improvements are possible, so let’s do that
for the x86 and the PowerPC. We’ll
ignore loop overhead and any stalls and
assume maximum throughput for this
estimate to give ourselves a lower bound.

For the x86, my estimate for the
minimum clock cycles to do our matrix
multiply is 30 cycles: 9 multiplies at an
optimistic 1 cycle each, 6 additions also at
1 cycle each, 3 stores at 2 cycles each, and
9 loads for the source vector because the
binary x86 instructions don’t let you keep
an untouched copy of it in registers. For
the PowerPC, we can load the whole
matrix into registers before we start, so I
count 15 cycles: 3 loads, 9 multiply-addi-
tions, and 3 stores. Both estimates are
close to the best times we achieved, so we
can be pretty sure we’re not missing any-
thing major in our analysis.

I suppose, if forced to pick a winner,
I’d choose the Microsoft compiler. It
seemed to do what it was told most of the
time, so if you give it highly optimized
code it does an okay job. The Borland
compiler with the Intel backend did okay

++) {

{
= pMatrix[i][j] * pSourceVectors[j];

ue;
http://www.gdmag.com
as well, but its quality seemed slightly
more random (note the spike in Figure
1). I should also note the Intel backend
wouldn’t compile my texture mapper cor-
rectly, while Borland without the Intel
backend compiled it correctly but gener-
ated the code quality you’d expect from
Borland’s position on Figure 1. The IBM
and the Metaware compilers were the
most consistent of the bunch, meaning
they did better than most on the unopti-
mized functions, as in Listing 1. To me,
this indicates both compilers recognize
optimization opportunities at a high level
but can’t generate tight x86 machine code
at the low level. Watcom was the most
disappointing of the bunch, simply
because the conventional wisdom says
Watcom generates great code. I didn’t see
great code from Watcom in my tests.

The main point here is that you can-
not expect the compiler to do much work
for you beyond a rote translation of the
code you write into native machine code.
(With the incredible code generation
bugs I’ve found, you sometimes can’t even
expect this.) If you write a loop that does
one simple thing and you express it with
10 inefficient operations, the compiler
will faithfully translate all ten operations
for you, performance be damned.

With that in mind, let’s discuss the
kinds of optimizations you should be able
to expect from the compiler but currently
have to perform yourself.

Transformers, More
Than Meets The Eye
When a compiler optimizes your program
it (supposedly) does work at a number of
different levels. At the lowest levels, it
obviously needs to generate the fastest
instruction sequence for a given atomic
high-level language operation: a C addi-
tion of two integers shouldn’t turn into
much more than a machine code addition
with a possible load or store. At a higher
level, the compiler puts your code
through a series of program transforma-
tions which turn the code you wrote into
something more amenable to the lower-
level code generator. These transforma-
tions aren’t algorithmic changes. For
example, the compiler won’t change your
O(n2) bubble sort to an O(n log n) quick-
void TransformVectors0(float *pDestVectors,
float const (*pMatrix)[3],
float const *pSourceVectors, int NumberOfVectors)
{

int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter

for(i = 0;i < 3;i++) {
float Value = 0.0f;
for(j = 0;j < 3;j++)

Value +
}
*pDestVectors++ = Val

}
pSourceVectors += 3;

}
}

sort; that part is up to you (and algorithm
changes are still the most important part
of optimizing with the sole exception of
profiling your application to make sure
you know where to optimize). There are a
number of these transformations available
to the compiler, but we’ll discuss what I
think are the five most important ones:
alias analysis, code motion, common
subexpression elimination, strength
reduction, and loop unrolling. You can
perform these transformations on your
code better than the current crop of com-
pilers, once you know how they work.

Alias Analysis
As we’ve seen in previous articles,
memory is slow compared to registers,
so it would be really nice if the compiler
could keep all your active variables in
registers and operate on them there. If
it could do this, it wouldn’t have to
keep touching memory to reload every-
thing after every store. With pointers,
18 GAME DEVELOPER • AUGUST/SEPTEMBER 1996
however, it’s not that simple. If your
code performs reads and writes through
two pointers, the compiler needs to
decide whether one pointer can point to
the same object as the other, a phenom-
enon called pointer aliasing. For exam-
ple, think about what would happen in
Listing 1 if pDestVectors pointed into
the middle of pMatrix; it certainly
wouldn’t behave the same as Listing 2.
According to the ANSI standard, the
compiler needs to be pretty conservative
and assume the worst for pointers to
variables of the same type. So, one of
the first transformations I made to List-
ing 1 was to use local temporary vari-
ables to make explicit to the compiler
where I could alias pointers. The com-
piler knows a write to a temporary can-
not affect anything else if you’ve never
taken the address of the temporary. I
initially declared a temporary array (as
you saw in the previous issue), so I
didn’t have to unroll the matrix multi-
http://www.gdmag.com
ply loop, but none of the compilers used
this temporary array to eliminate spuri-
ous reloads. Apparently today’s compil-
ers can’t do alias analysis on arrays. I
also looked for a compiler switch to
make the compiler assume I wasn’t
aliasing pointers. Most compilers have
these switches, and I turned them on
when I found them.

Table 1 contains results for the
Microsoft compiler both with and with-
out the “assume no aliasing” switch
turned on, and you can see the switch
makes a big difference on Listing 2.
From looking at the disassembly, it
looks like the speed increase is due to
the compiler now having the ability to
move the stores to pDestVectors around
to better schedule the code. It didn’t
have this freedom when it had to
assume writes to the destination could
be writing into one of its source
operands. However, you can also see it
makes little difference on the unopti-

B E H I N D T H E S C R E E N
mized code; it would be hard to make
that code any slower.

On the other hand, you don’t nec-
essarily want to copy all of your active
variables into temporaries, as I found
out the hard way. The final column in
Table 1 shows the results of code that
copies the entire matrix into tempo-
raries before entering the loop. On the
PowerPC, you can see this gave me a
25% speedup because the compiler
could copy the matrix into registers and
reduce the number of loads in the inner
loop. On the x86, however, most com-
pilers slowed down on this code because
they actually implemented the copies to
temporaries. This behavior is related to
alias analysis, I believe. If the matrix is
in stack-based temporaries in the source
code, the compiler needs to prevent
writes through pDestVectors from
changing the matrix elements, so it
makes a copy of the matrix in the gen-
erated machine code. The PowerPC
20 GAME DEVELOPER • AUGUST/SEPTEMBER 1996
compiler didn’t have to do this because
it knows pDestVectors can never point
into the floating-point registers, where
it’s keeping the matrix. The x86 com-
pilers couldn’t put the matrix in the
floating-point registers, so they needed
to copy it. This is a particularly bad
example, because it means our C level
optimizations aren’t portable across
machines: the PowerPC version got
faster while the x86 versions got slower
on the same code.

As an aside, I wish the ANSI C++
standard would loosen up their require-
ments for compilers to support pointer
aliasing so pointers to const could be
assumed to not be aliased by pointers to
non-const in a function. However, I’m
sure this would break a ton of code that
relies on aliasing, so it’s not likely to hap-
pen. I’d say this code is poorly written
and deserves to be broken, but aliasing is
a complex issue and I might be missing a
legitimate use of it.
http://www.gdmag.com
Code Motion
When you move loop invariants out of
the loop, you’re performing code motion.
A loop invariant is something that doesn’t
change during the life of the loop, so it
makes sense to calculate it once outside
the loop and store it rather than calculate
it every time. Code motion can also mean
rearranging code so that it pipelines better
or accesses memory sequentially for better
memory bandwidth.

Common
Subexpression Elimination
A common subexpression is an operation
that appears multiple times in your code.
For example, if you compute x + y in two
places, and neither x nor y can change
between those two places, then x + y is a
common subexpression. Usually it’s faster
to compute the expression once and store
its result than to compute the result mul-
tiple times. Of course, there’s an excep-
tion to every rule, especially in these days

being trounced by a knight with a sword
that says, “LALR Parser Generator.” I
agree its goofy, but it’s a classic.

You should also spend time on the
web; there’s tons of compiler information
out there. For example, http://www.
nullstone.com/htmls/category.htm has a
series of 40 understandable examples of
program transformations. For some
aggressive compiler optimizations on a
supercomputer compiler, check out
http://www.astro.ku.dk/~aake/optimize/
options.html. It covers optimizations that
don’t even preserve the original meaning
of the code, which we didn’t get into.

I would be remiss if I didn’t mention
that my friend Mike Phillip of Motorola
actually managed to equal my final opti-
mization using only compiler switches
and Listing 1; you’ll remember I men-
tioned Mike at the end of the last article.
He ran the code through KAP twice with
the no alias switch and then through the
Motorola PowerPC compiler. It just goes
to show you that knowledge of how
something works (in this case Mike’s
knowledge of how the compiler worked)
is always a good thing. ■

Don’t believe the hype—Chris Hecker
can use all the help he can get at
checker@bix.com or gdmag@mfi.com.

Listing 2. The Optimized Code
of wicked fast processors and slow memo-
ry systems. Computing something and
caching it might be slower than just com-
puting it multiple times. Time your code,
as always. By the way, I’ve seen the
acronym “CSE” applied to both Com-
mon SubExpression and Common
Subexpression Elimination.

Strength Reduction
The classic example of strength reduc-
tion is turning a multiply or divide by a
power-of-2 into a shift. I’m not sure why
it’s called strength reduction, but the
basic idea is to convert an expensive
operation into a cheap one or a series of
cheap ones. Taking the classic example a
step farther, you can break up more
complicated multiplies into simpler ones
(for example, x * 6 = x * 2 + x * 4), which
can again be strength-reduced to some
shifts and adds. Some architectures
might further benefit from strength-
reducing shifts by 1 to an addition.
Another subtle but powerful example of
strength reduction is a Bresenham line
drawer, or any kind of forward differenc-
ing algorithm. These algorithms convert
linear or even arbitrary degree polynomi-
al equation evaluations into a bunch of
additions by computing the forward dif-
ferences outside the loop.

Replacing a divide with a multiplica-
tion by the reciprocal is an optimization
that could arguably be called strength
reduction, but it could also be considered
an example of a related transformation
called algebraic identification. You can
guess from the name what that means.

Loop Unrolling
Finally, we come to everyone’s favorite
optimization—loop unrolling. Here, we
try to mitigate some loop overhead and
perhaps open up possibilities for pipelin-
ing by duplicating the loop body and
reducing the loop count to compensate.
Of course, you have to deal with some
setup issues if your loop count doesn’t
divide evenly by your unroll count.

I got another large speedup in our
test code by unrolling the loop in Listing
1 on my way to Listing 2, and this
speedup was particularly surprising
because it’s a no-brainer. Alias analysis
and code motion are hard. Unrolling a
loop is basically a cut-and-paste
operation.

The biggest thing to watch out for
when unrolling a loop, besides the setup
overhead mentioned above, is code bloat.
You can actually make your unrolled code
slower by causing it to be so big that it
doesn’t fit in the cache or kicks other
important code or data out of the cache.
Jumps aren’t as expensive as they used to
be, so amortizing the loop overhead isn’t a
big win since there’s less overhead to
amortize. Jumps on the Pentium, for
example, are only a half cycle under the
right circumstances. Cache misses are a
lot more than a half cycle.

The gcc compiler supplies a com-
mand-line switch to force unrolling, so I
used it in the row labeled “GNU gcc
unroll.” As you can see, it’s not always
faster than the gcc without unrolling.

Final Output
If you want to learn more about compiler
technology, the bible is Compilers: Princi-
ples, Techniques and Tools, by Alfred V.
Aho, Ravi Sethi, and Jeffrey D. Ullman
(Addison-Wesley 1986), affectionately
called “The Dragon Book” because the
cover illustration is a dragon bearing the
words “Complexity of Compiler Design”
oid TransformVectors5(float *pDestVectors,
const float (*pMatrix)[3],
const float *pSourceVectors, int NumberOfVectors)
{

int Counter;
float Value;
float _Krr1;
float _Krr2;

for (Counter = 0; Counter<NumberOfVectors; Counter++) {
_Krr1 = pMatrix[0][0] * pSourceVectors[0];
_Krr2 = pMatrix[1][0] * pSourceVectors[0];
Value = pMatrix[2][0] * pSourceVectors[0];
_Krr1 += pMatrix[0][1] * pSourceVectors[1];
_Krr2 += pMatrix[1][1] * pSourceVectors[1];
Value += pMatrix[2][1] * pSourceVectors[1];
_Krr1 += pMatrix[0][2] * pSourceVectors[2];
_Krr2 += pMatrix[1][2] * pSourceVectors[2];
Value += pMatrix[2][2] * pSourceVectors[2];

*pDestVectors++ = _Krr1;
*pDestVectors++ = _Krr2;
*pDestVectors++ = Value;
pSourceVectors += 3;

}
}

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 21http://www.gdmag.com

Please use checker@d6.com.

