
be a stretch. I am, however, going to clean

up the awful mess I left us in after the last

issue, where we had a bunch of equations, a

whole lot of terms, and not much of a clue

about what to do to get a ponytail simula-

tor out the other end.

When We Last Left Our Heroes...

There’s no escaping the fact that you need to read last
month’s part one article (“How to Simulate a Ponytail,”

March 2000) in order to read this part two. I can’t review it in
any meaningful way, so I’m just going to set up our initial
conditions from the end of last month’s article and move on.
Figure 1 shows the bodies and notation we’re using, and
Table 1 contains the equations we ended up with.

In part one, we decided to do the derivation for two con-
strained bodies first, to keep things manageable, and then
later generalize it to the longer chain of bodies that make up
the ponytail. At the end of part one, we had written out equa-
tions for the linear and angular accelerations of our simple
two-body system when they were affected by the constraint
force, fc , as you can see in Equations 1 and 2. We also deter-
mined that Equation 3 was going to be the constraint equa-
tion we would attempt to satisfy at all times during the simu-
lation using the constraint force. If we could satisfy Equation

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

P H Y S I C SG A M E

How to
Simulate a
Ponytail,
Part 2

b y C h r i s H e c k e r

hen I was a kid, I used to

leave my room — or wherever I

went, really — a total mess. I’d

like to be able to say that I’ve

changed and am a really tidy and

responsible person now, but that would

Chris Hecker (checker@d6.com) is the Editor-at-Large of Game
Developer.

WW
Swinging ponytail

screenshot from the

sample application

used in last month’s

article.

3, and our simulation started with the position and velocity
constraints satisfied, we’d have a constrained rigid body sim-
ulator. Finally, I said the end product of all the plugging and
chugging with equations would be a linear system of equa-
tions looking like Equation 4: Afc = b. We’d solve this equa-
tion for the force of constraint, and then apply it back to the
objects to stick them together.

Plug ‘n’ Chug

W e originally derived Equation 3 because we needed
the constraint equation to be in terms of accelera-

tions rather than positions or velocities. Now that we’ve got
it in acceleration space, we can enforce it with fc , since we
know forces can directly affect accelerations. Still, it’s not
immediately obvious how to get our fc into Equation 3,
where it can do some good.

Equation 3 is too abstract for our needs. It simply says the
acceleration of the two constraint endpoints must be equal.
It makes sense that the force of constraint, fc , can affect the
accelerations of the endpoints by pushing and pulling on
the bodies, but how do we show this mathematically? First,
we need to express the endpoint accelerations in terms of
the body’s linear and angular accelerations, which we know
are directly affected by fc via Equations 1 and 2.

Remember from part one (or from my original physics
articles from Game Developer, referenced at the end of this
article) that the equation for the acceleration of a point fixed
on a rigid body — say, Body A — looks like this:

Eq. 5
Equation 5 contains the second derivative of RA (the vector
to the center of mass of the body) and aA (the angular accel-
eration of the body). These quantities are definitely affected
by fc as shown in Equations 1 and 2.

If we substitute Equation 5 and its counterpart for Body B
into Equation 3, we get a very long equation. Then, if we
substitute Equations 1 and 2 and their counterparts for Body
B into the very long equation, we get an extremely long equa-
tion. At that point, our extremely long equation is in terms
of our only unknown, fc , and we can munge it around until
we get something that looks like Equation 4. We could do
this, but we’d probably go insane trying to keep all the terms
straight with all their subscripts and whatnot, and I know I’d
go insane trying to type all the intermediate stages into the
evil Equation Editor.

We’ll take a step back, and just work with Equation 5 for a
little while. We can move ahead under the assumption that
anything we do to Equation 5, we can do to its Body B part-
ner. If we can simplify Equation 5 before substituting it into
Equation 3, then we can do the same for the B version and
we’ll stay sane.

One Term at a Time

Look at the first term on the right hand side of Equation
5, the acceleration of RA. Equation 1 just drops into

Equation 5 in place of this term, and we get Equation 6:

Eq. 6
This is already starting to get messy. We can simplify a bit

by introducing a new term, bA. We’ll use bA to hold all of the
“known” terms in the equation. The known terms are those
that contain quantities whose values we know how to calcu-
late at any given time. So, as we discussed in part one, the
external forces are all known at a given timestep, meaning
we can stuff the FEA term into bA. Also, the last term in Equa-
tion 6 is known because it only contains angular velocities
and the position vector, rA, both of which are known at any
timestep since they were integrated forward from a previous

˙ṗ M f M F r rA A c A EA A A A A A= + + × + × ×()− −1 1 α ω ω

˙˙ ˙˙p R r rA A A A A A A= + × + × ×()α ω ω

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

45

ACCELERATION EQUATIONS. Equations 1 and 2 are the linear and angular acceleration equa-

tions for the rigid body A in terms of the external forces and torques (denoted with a E

subscript) and the force of constraint, fc. Body B’s equations would be the same with B

subscripts and a –fc in place of the fc terms because the constraint force is applied neg-

atively to Body B.

Eq. 1

Eq. 2

CONSTRAINT EQUATION. Equation 3 is the second derivative of the position constraint

equation, p
A

– p
B

= 0. This equation specifies that the positions (and velocities and

accelerations) of the endpoints of the constraint vectors must be equal at all times.

Eq. 3

OUR GOAL. At the end of this article, we’d better have a system of linear equations that

looks like Equation 4.

Eq. 4

TA B L E 1 . Review equations from last month’s article.

˙Ṙ M f M F

I r f I I L

A A c A EA

A A A c A EA A A A

= +

= ×() + − ×()

− −

− − −

1 1

1 1 1α τ ω

˙˙ ˙˙p pA B− = 0

Af bc =

Body B

Body A

R
B

r
B

r
A

R
A

p
A
= pB

F I G U R E 1 . Bodies and notation from

last month’s article.

timestep. So, our bA looks like this so far:

Eq. 7
And, our simplified Equation 6 looks like this:

Eq. 8
The substitution of Equation 2 for aA is more complicat-

ed. First, the aA is inside a cross product, which means the
entire right-hand side of Equation 2 is going to have to go
into the first term of that cross product. This makes perfect
sense mathematically: aA is a vector, and so the right-hand
side of Equation 2 is a vector as well — it’s simply com-
posed of a bunch of other vectors. It’s a big mess symboli-
cally, though, because replacing the single symbol on the
left-hand side of Equation 2 with the multi-term expres-
sion on the right-hand side makes the cross product pretty
much unreadable, and we have to use parentheses to keep
everything straight.

We’ll concentrate solely on the aA term in Equation 8 and
ignore the other terms for a moment. We substitute in Equa-
tion 2 and use the fact that the cross product distributes
across addition and subtraction:

Eq. 9
Now, before dropping Equation 9 back into Equation 8,

let’s try to stick a bunch of it into bA to get it out of the way.
The first term on the right-hand side of Equation 9 contains
fc , so we need to keep it around, but the other two terms are
both known, since they contain only external torques,
velocities, momenta, and positions. Away into bA they go,
leaving us with:

Eq. 10
I “un-distributed” the cross product of the two known terms
in Equation 9 when writing Equation 10 to make it a bit
shorter.

Our equation for the constraint endpoint acceleration
now looks like this:

Eq. 11
As you can see, it’s much simpler than it could have been,
but we’ve still got some work to do.

A Breather

L et’s take a break and assess our situation. We have
Equation 11, which is an equation for the acceleration

of Body A’s constraint endpoint in terms of the known
quantities (most of which are tucked away in bA), and the
unknown constraint force, fc. That is, at any given time we
can calculate the value of the bA vector, and plug it into
Equation 11. We can also calculate all of the other known
terms on the right hand side of Equation 11, such as the
mass, inertia tensor, and constraint vector, rA. The excep-
tion is fc ; we don’t know it in advance. In fact, our whole
goal is to solve for fc so we can plug it back into Equations
1 and 2 to find the acceleration of the bodies under
constraint.

Since fc is our unknown, we need to get it in a better posi-
tion to be manipulated. The first term on the right-hand
side of Equation 11 is pretty reasonable, since it’s just a
matrix times fc. This term looks a bit like Equation 4, so we
know we’re getting close. However, fc is stuck inside two
cross products in the second term, which is a far cry from
Equation 4.

Cross Products

How do we get fc out of the cross products? Cross prod-
ucts are notoriously hard to manipulate, unless you

have the following definitions in your bag of tricks:

Eq. 12

Eq. 13

Equation 12 is the familiar rule stating that when you
reverse the cross product terms, the resulting vector is negat-
ed. This is what you see when you accidentally compute a
triangle’s normal by crossing the edges in the wrong direc-
tion — you get the inverted normal.

Equation 13 defines the “tilde operator,” which, when
applied to a vector, creates the matrix shown in the equa-
tion. It just so happens that this tilde-matrix of vector a —
also called the “skew symmetric matrix of a” — times vector
b gives the same resulting vector as taking the cross product
of a and b (multiply the matrix-vector product on a piece of
paper to double-check it for yourself). This is a great trick,
because it turns a cross product into a matrix-vector product,
which we know how to manipulate.

Now we can pound on our cross product term. First, let’s
get fc on the right side of the expression by applying Equa-
tion 12:

Next, we “tilde-ize” the outer cross product:

Notice how the outer brackets aren’t needed anymore,
because now we just have a matrix multiply of the tilde’d rA
and the inverse inertia tensor. Finally, let’s tilde-ize the
inner cross product:

Our result is simply three matrices times our unknown vec-
tor. Let’s put this result back into Equation 11 and group the
terms to isolate fc:

Eq. 14
Now we’re in business. I’ve renamed the grouped matrices

“AA” to highlight the structure of the equations. We have a

˙ṗ f bA A c A= +A

˙˙ ˜ ˜p M r I r f bA A A A A c A= −[] +− −1 1

˙˙ ˜ ˜p M f r I r f bA A c A A A c A= − +− −1 1

− ×() = −− −˜ ˜ ˜r I r f r I r fA A A c A A A c
1 1

− × ×()[] = ×()− −r I r f r I r fA A A c A A A C
1 1˜

I r f r r I r fA A c A A A A c
− −×()[] × = − × ×()[]1 1

a b ab

a a

a a

a a

b

b

b

× = =
−

−
−

˜
0

0

0

3 2

3 1

2 1

1

2

3

a b b a× = − ×

˙ṗ M f I r f r bA A c A A c A A= + ×()[] × +− −1 1

b M F r I I L rA A EA A A A A EA A A A A= + × ×() + − ×()[] ×− − −1 1 1ω ω τ ω

α τ ωA A A a c A A EA A A A A Ar I r f r I r I L r× = ×()[] × + [] × − ×()[] ×− − −1 1 1

˙ṗ M f r bA A c A A A= + × +−1 α

b M F rA A EA A A A= + × ×()−1 ω ω

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

G A M E P H Y S I C S

known matrix, AA, and a known vector, bA, and our
unknown fc . We’re not quite at Equation 4, but we’re
extremely close. We only need to get rid of the pA accelera-
tion term, and that’s our cue to substitute back into
Equation 3.

Body B

I f you look at all the work we did to get from Equation 5
to Equation 14, you’ll see that very little of it depended

on whether we were talking about Body A or Body B. There’s
really just one difference between the bodies, and we’ve
already mentioned it: fc is positive for Body A, but negative
for Body B. This means we can simply rewrite all the equa-
tions with B subscripts, and if we’re careful to substitute in
–fc wherever fc shows up, we’ll have valid equations for Body
B. We don’t have to rederive everything.

We can actually just write the Equation 14 for Body B by
inspection:

Eq. 15
The AB matrix and the bB vector are calculated exactly as
shown above for Body A, and we simply negate the fc term.
Equation 3 tells us we can subtract Equation 15 from Equa-
tion 14 to get 0, assuming we’re enforcing our constraint
properly. Let’s write the subtraction, taking care to get our
signs right:

Finally, let’s group our terms to match Equation 3:

Eq. 16
That’s it. We have a linear system matching Equation 4,

where A = AA + AB and b = –bA + bB. A and b are known, and
fc is unknown, meaning that at any given time, we can con-
struct Equation 16 for the two rigid bodies, and then solve it
for fc to find the constraint force that will hold the bodies
together.

The Simulation Algorithm

Now we’re ready to outline the overall simulation algo-
rithm for two rigid bodies with one constraint:

1. Compute the external forces: FEA, tEA, FEB, tEB.
2. Compute the A matrix and the b vector.
3. Solve the linear system for fc.
4. Apply fc and the external forces to the objects.
5. Integrate forward.

After step three, fc is a known force, just like the external
forces. The forces can now all be applied to the bodies in the
usual way. Remember, fc is applied at the tip of the con-
straint vector, so it will induce torque on the objects as well
as apply a force to the center of mass. Also remember that fc
is applied negatively to Body B.

The Linear System

So, how do we solve the Afc = b linear system? This is
actually the easiest part of the algorithm in some

sense, because there are so many different ways to do it.
Solving linear systems on computers is the most studied
area of numerical analysis, and there are hundreds of books
about doing it right and lots of free source code. You could
probably write your own Gaussian Elimination routine in
a few lines of C, or you could download some fancy
numerical linear algebra package if you’re so inclined.
If you’re just interested in solving the 3×3 system in
Equation 16, you could even use Cramer’s Rule or just
solve the system by hand symbolically, but those tech-
niques won’t scale to the larger systems that occur when
we add bodies. When I wrote the sample application for
this article, I downloaded a simple linear system solver
from the web (http://www.netlib.org) and hacked it into
my program. See the references for details on the sample
application.

Kinematic Control

B efore we generalize our derivation to multiple
bodies, let’s talk about how kinematic control fits

into our formulation. From last month, you’ll remember
the head of the character is kinematically controlled,
meaning its movements are already known from an
animation. It’s easy to integrate animated bodies into our
algorithm.

First, we need to be able to generate values for the
known position, velocity, and acceleration of the kinemati-
cally controlled body at a given point in time. We can find
the equations for these values from our animation system
in most cases. The position equation is simplest — we have
to have that around if we’re animating the body in the first
place. The velocity and acceleration equations are attained
by differentiating the equation for position. If we’re inter-
polating keyframes, then the interpolation function will
give us the velocity at a given time when we differentiate
it. Another differentiation gives us the acceleration. For
example, if we’re linearly interpolating positions between
keyframes, the velocity will be constant and the accelera-
tion will be zero. Linear interpolation is not continuous
at the keyframes themselves because the direction changes
sharply, so be careful about differentiating in those areas.
If we’re linearly interpolating joint angle keyframes, our
velocities and accelerations will be nonlinear, but still
derivable from the equations. If we’re doing a more soph-
isticated continuous spline interpolation, our derivatives
will be even more complicated, but we should still
be able to attain equations for the velocity and
acceleration.

Once we’ve gotten the linear and angular positions,
velocities, and accelerations from our animation system,
we use these known values everywhere they appear in our
equations. Equations 1 and 2 for the kinematically con-
trolled body become known values, rather than equations
depending on the force of constraint. All of the animating
body’s kinematic quantities are now known and end up in

A AA B c A Bf b b+[] = − +

˙˙ ˙˙p p f b f bA B A c A B c B− = + + − =A A 0

˙ṗ f b f bB B c B B c B= −() + = − +A A

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

G A M E P H Y S I C S

the b vector. When we compute fc, the computed force
will make the dynamically controlled body obey the move-
ment of the constraint due to the kinematically controlled
body’s animation. We don’t apply the constraint force to
the animating body because, well, it’s animated, not
simulated.

Multiple Constraints

Two bodies does not a ponytail make. Do we have to re-
derive everything when we want to do three bodies with

two constraints in a chain, not to mention N bodies with
N – 1 constraints? Thankfully, the answer is no. The equa-
tions for multiple bodies and constraints are very similar to
those we’ve already derived, but we need to talk a bit more
about the structure of the multi-constraint problem before
we can extend them.

The first thing to notice is that we have to solve for all of
the constraint forces simultaneously. If I have a chain of
three bodies, and I pull up on the top body, not only does
the middle body have to feel the yank, but the bottom body
does as well. If we didn’t solve simultaneously, the force of
the pull would ripple down the chain in the order we solved
the constraints, and the chain would separate. This is not
the behavior we want.

Because we need to solve
simultaneously, all of the
constraints need to be rep-
resented in the equations
we write. This forces us to
develop some new nota-
tion that will scale to mul-
tiple constraints. Bodies
can now have two con-
straints attached to them,
rather than just having one
as in our two-body deriva-
tion. It turns out that it
makes the most sense to be
“constraint-centric” in our
notation, numbering the
constraints and having
them refer to the bodies
rather than having the
bodies refer to the
constraints.

Figure 2 shows this nota-
tion. The constraints are
numbered 1, 2, and 3; if we
were being completely gen-
eral we’d call them i – 1, i,
and i + 1. We’re going to
talk about the middle
joint, number 2. We’ll call
the forces at each con-
straint fc1, fc2, and fc3. The
constraints attach the two bodies on either side of the joint,
and I’ve chosen the subscripts u and d to stand for the
“upstairs” body and the “downstairs” body relative to the
joint in the figure. So, the body between joints 1 and 2 is the

upstairs body of joint 2, and the other body is the down-
stairs body of joint 2. The constraint endpoint of the top
body for joint 2 is denoted p2u , and the endpoint from the
bottom body is p2d , and so on. The constraint endpoints and
the r vectors are still attached to their respective bodies, but
they’re numbered relative to the joints. Notice that the u-
body of joint 2 is the d-body of joint 1.

While I make no claims to the elegance of this notation, it
will let us get the job done.

General Acceleration Equations

G iven the new notation, we could rederive all of our
equations for the new general constraint. We don’t

have the space for that (and it’s almost identical to our pre-
vious derivation), so we’re going to skip ahead and show the
structure of the equations we end up with for joint 2. The
accelerations of the two endpoints associated with joint 2
look like this:

Eq. 17

Eq. 18
A single joint is affected not only by its own constraint

force, but also by the constraint forces on
either side of it. This is because the body
accelerations are modified by all the con-
straint forces acting on them, and those
body accelerations appear in the equation
for the constraint. Put another way, the
top body’s motion at joint 2 is dependent
on what joint 1’s force is doing, in addi-
tion to what joint 2’s force is doing.

I haven’t described what the A matrices
look like exactly, but they’ll be very simi-
lar in composition to the A matrices we
derived above, so we can just deal with
them symbolically here. They’re subscript-
ed to describe their function: A2u1 is the
matrix for joint 2’s upstairs body that mul-
tiplies fc1. In English, A2u1 describes the
acceleration effect fc1 has on joint 2’s
upstairs endpoint. Put yet another way,
A2u1 maps the force from joint 1 to an
acceleration at joint 2, through the body.
To belabor the point a bit more, if you
look at the expression that makes up A2u1
(once you’ve derived it, of course!), you’ll
see that it converts fc1 to accelerations on
the center of mass, and then maps those
accelerations out to p2u.

Although I didn’t mention this way of
thinking above, the original AA and AB
matrices from the two-body derivation
work the same way. The linear acceleration
is transferred through the M–1 term, and

the angular acceleration is transferred through the cross
product (or tilde matrix) and inertia tensor term. In AA and
AB we’re mapping the constraint force from the joint, down
through the body, and back up to the same joint, but the

˙ṗ f f bd d c d c d2 2 2 2 2 3 3 2= − + +A A

˙ṗ f f bu u c u c u2 2 2 2 2 1 1 2= − +A A

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

50

G A M E P H Y S I C S

1

2

3

R
2u

R
2d

r
2d

r
2u

p 2u = p 2d

F I G U R E 2 . A multi-constraint system.

principle still applies. In Equations 17 and 18, A2u2 and A2d2
are similar to AA and AB, since they map fc2 to acceleration
back at joint 2.

We’ve also adopted the convention of applying the con-
straint force positively to the u-body and negatively to the
d-body, which accounts for the negative signs in Equations
17 and 18.

The Multi-Constraint System

I f we subtract Equation 18 from Equation 17 and group
terms, we get the constraint equation we must satisfy for

joint 2:

Eq. 19
This equation has the three unknown vectors in it, but it’s
only one vector equation. To solve a linear system, we need
as many equations as we have unknowns. Where will we
find the other equations? From the other constraints,
naturally.

Let’s assume for the moment that the system in Figure 2
has four bodies and the three constraints shown. In other
words, although they’re only hinted at in the figure, there is
a body above joint 1 and a body below joint 3. These outly-
ing bodies each has only one constraint (joint 1 for the
upper body and joint 3 for the lower body, obviously), and
they are the endpoints of the chain in this example. Given
this system, the equation for joint 1 is:

Eq. 20
And the equation for joint 3 is:

Eq. 21
Notice that Equations 20 and 21 have only two constraint
forces each in them, as opposed to the three forces in
Equation 19. The equation for the end joints in a chain will
have only two constraint forces because the extremal bodies
don’t have a joint on their “far” side (or they wouldn’t be
very extremal, now would they?).

Now for a bit of matrix magic. Equation 20 contains fc1
and fc2, Equation 19 contains fc1, fc2, and fc3, and Equation
21 contains fc2 and fc3. Each of these equations depends on
one or more of the other ones. This is the mathematical
expression of our statement above that the constraints must
be solved simultaneously. We can construct a single large
matrix equation that contains all of these equations by
stacking them up, like so:

Eq. 22

If you perform the matrix multiply in Equation 22, you
can see you get the exact equations listed above. Further-
more, Equation 22 is just another Afc = b linear system,
where A now stands for the compound matrix in Equation
22, and fc and b (with no numbered subscripts) stand for the
stacked vectors. Instead of a 3×3 system, we now have a 9×9
system, but it’s still a linear system and the same rules apply
to solving it. Throw Equation 22 into a linear solver, apply
the individual fc vectors back to their appropriate objects,
and you’ve got a constrained system.

From here, it should be pretty clear how to extend this
math to an arbitrary number of bodies and constraints. The
A matrix and the associated vectors keep growing, but the
structure is exactly the same.

The Linear System Revisited

I said you can solve the Afc = b system using a generic lin-
ear solver, which is true. However, there are more effi-

cient ways of solving the particular matrix generated by our
algorithm that take advantage of its special properties. Effi-
ciency is incredibly important when doing constrained
dynamics because linear systems such as Afc = b have O(n3)
complexity in the general case, where n is the number of
rows in the matrix. This means that every constraint equa-
tion you add as an additional row makes the system much
slower to solve. O(n3) complexity is not the kind of slowness
that waiting for next year’s CPU can fix.

The most important special characteristic of our A matrix
is its sparsity structure. You can see this structure developing
in Equation 22, and as you add more bodies and constraints
you can see it even better: the constraint submatrices stay on
the diagonal of the matrix and its neighboring columns, and
the rest of the matrix is zero. This makes intuitive sense
given that a constraint depends only on itself (which corre-
sponds to the diagonal element) and its two constraint
neighbors (the off-diagonal elements). The official name for
the sparsity structure of the A matrix is “block tridiagonal,”
for somewhat obvious reasons. What’s more, the A matrix is
symmetric, although this fact is not completely clear from
our derivation. And finally, it’s “positive definite,” assuming
the constraint equations are well formed. A positive definite
matrix is roughly analogous to restricting a real number to
be greater than zero, rather than allowing it to be zero or
negative. You can learn more about these characteristics in a
good numerical linear algebra book.

Taken together, these properties mean we can write (or
download) a custom linear solver that will solve our systems
in O(n) time. O(n) is definitely the kind of problem that
AMD and Intel will make faster every year.

Numerical Accuracy

I t’s really a shame that all of this math I’ve presented to
you doesn’t actually work when you type it into the com-

puter. Well, that’s a bit extreme, but the world of floating-
point numerics is far removed from that of symbolic equa-
tions, and we have to do a bit more work to get them to
match up.

A A A

A A A A

A A A

1 1 1 1 1 2

2 1 2 2 2 2 2 3

3 2 3 3 3 3

1

2

3

1 1

2 2

3 3

0

0

u d d

u u d d

u u d

c

c

c

u d

u d

u d

f

f

f

b b

b b

b b

+ −

− + −

− +

=

− +

− +

− +

− + +[] = − +A A A3 2 2 3 3 3 3 3 3 3u c u d c u df f b b

A A A1 1 1 1 1 1 2 2 1 1u d c d c u df f b b+[] − = − +

− + +[] − = − +A A A A2 1 1 2 2 2 2 2 2 3 3 2 2u c u d c d c u df f f b b

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

52

G A M E P H Y S I C S

The major problem is that we’re
using numerically computed forces to
affect accelerations, which are then
numerically integrated to find new
positions. This algorithm has two big
numerical holes in it. For starters, the
forces we compute are not going to be
exact because of floating-point errors
accumulated during the formulation of
the Afc = b system and its solution.
This means the fc terms aren’t going to
exactly enforce the constraint equa-
tions when they’re applied in floating
point. To compound matters, the
integrator is going to introduce even
more numerical errors, since we’re
using forces to keep a position con-
straint together. These two sources of
error mean the objects will slowly drift
apart. At first the errors will be small.
If you subtract the positions of the
two endpoints of a constraint, you’ll
see the result is not exactly the zero
vector after a few steps. Eventually, the
objects will have drifted far enough
apart so you can see the gap. This
is bad.

There are many ways of dealing
with this drift, and we don’t have the
space to talk about any of them in
depth. I favor a method called
Baumgarte Stabilization, which basi-
cally places tiny springs on the joints
that are adjusted to suck up the
numerical error as it develops. The
springs don’t actually provide any
physical support (the fc terms still do
that), but they do a great job of keep-
ing the joints together in the face of
floating-point errors. The sample
application implements Baumgarte
Stabilization to fight the drift prob-
lem. It’s easy to implement and it
works well.

Other methods include directly cor-
recting for the drift in position space,
and other techniques. Now that you
know the math behind constrained
dynamics, you’ll have no trouble fol-
lowing the numerical accuracy discus-
sions in the books referenced on my
web site.

Miscellanea

Phew! That’s a lot of equations, but
we’ve accomplished a lot. We’ve

actually accomplished even more than
we set out to, because all of this math
is valid for completely general con-

straints. When I say general, I mean it
in two ways: topologically and in terms
of the joint types.

Topologically, our constraint-cen-
tric viewpoint means we can have as
many constraints coming off a rigid
body as we like. We’ll need to modify
our notation slightly to support this,
and the location of the elements in
the Equation 22 matrix will change a
bit depending on the interconnection
of the bodies, but making an octopus
would be no problem, even though
the root body has eight constraints
on it.

As far as joint types go, Equation 3 is
just one of an infinite number of accel-
eration constraints this math can
enforce. Again, pieces of the derivation
change, but the overall structure stays
the same, regardless of whether you’re
simulating spherical joints such as
Equation 3, or hinges, or prismatics, or
whatever. Look at the references on my
web site for books about writing differ-
ent constraint equations, or give it a try
yourself. The important thing to
remember is to get it clear in your head
what you’d like the joint to be, and
then write down an equation that

describes that joint. Differentiate it
then plug and chug.

Hopefully, with the general interest
in physics for games that’s been grow-
ing for the past few years, we’ll start to
see a lot of special effects using real,
consistent physics. Then, when every-
body’s comfortable with the math and
implementation issues, we can start to
work on integrating physics with game
play and game physics can finally live
up to its potential. ■

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

53

My dynamics web site, including the
ponytail sample app, articles, references,
and more:
http://www.d6.com/users/checker/
dynamics.htm

FF OO RR FF UU RR TT HH EE RR II NN FF OO

I forgot last time to thank Lisa Washburn of

Vector Graphics (http://www.vectorg.com)

for the model of the head and the ponytail

pieces.

Acknowledgements

	back:

