
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

b y C h r i s H e c k e r B E H I N D T H E S C R E E N

14

h t

An Open Letter to Microsoft: Do the

Right Thing for the 3D Game Industry

A debate is raging in the game development community on an incredibly

important topic: 3D APIs for the PC, and specifically, Direct3D versus

OpenGL. This debate has its share of contentless flames, but at its core

is an issue that will affect the daily lives of 3D game developers

I’m going to take a short break from our
physics series to cover a topic of great
importance to the 3D game industry.
I’ll be back with physics next issue.

Where’s Physics, Part 4 ?
for many years to come. Being one of
these developers, I care deeply about
how this issue is resolved. To put it
very bluntly, I believe it would be best
for the 3D game industry if Microsoft
canceled Direct3D Immediate Mode
and put all their 3D immediate mode
resources behind their OpenGL team.
This article will give my rationale for
that statement.

The API issue has many twists and
turns. Debating it is like wrestling Jell-
O; every time you think you’ve got it
cornered, it squeezes out somewhere
else. For this reason, I’m going to pro-
ceed very methodically and lay out a
logical framework for my opinion. I’m
sure to leave some holes through
which someone can squeeze if they are
intent on disagreeing with me, but I
think I’ll provide a vast preponderance
of evidence to back up my claims. Note
that most of the ideas I’ll present have
been stated by other people in various
places, so I can’t claim to have origi-
nated many of these arguments myself.

Background

F irst, some clarifications: When I
refer to Direct3D in this article, I

mean Direct3D Immediate Mode, not
Retained Mode. Retained Mode will be
useful to some developers, but high-
end 3D games probably won’t use it
since they need more control over
database traversal and culling. Just to
be totally clear, Direct3D is a
Microsoft-designed API; OpenGL was
originally designed by SGI, but is now
handled by an independent
Architecture Review Board (the ARB,
where Microsoft, SGI, and several other
t p : / / w w w . g d m a g . c o m
vendors have voting seats). In the
space I have here, I’m not going to be
able to describe either API, so I’m going
to assume you’re familiar with both
(check the references at the end of the
article for more information on the
APIs themselves).

Next, the history: This debate has
been going on for a long time. I
stopped looking for the original
“Direct3D versus OpenGL” Usenet post-
ing when I found one (a reply, no less)
dating all the way back to March 1996.
The conventional wisdom used to be
that OpenGL was inherently slow —
too slow for games — and that
Microsoft had to design their own API. I
bought into this wisdom when I was at
Microsoft (and even helped spread it
there) about two or three years ago. In
fact, everyone I knew was convinced
OpenGL was big and slow, and the only
solution for games was a new and dif-
ferent API. In retrospect, I realize that
didn’t understand the technical issues;
what’s worse, I didn’t know that I did-
n’t understand the issues. Even worse
yet, no one within earshot understood
the technical issues well enough to
explain why we were all wrong. The
people who really understood OpenGL
were in the workstation business at this
time, and didn’t realize 3D games were
about to become an important market
segment.
A P R I
My opinion started to change last
year, after a few important events.
First, a bunch of people at SGI got fed
up with Microsoft’s game evangelists
telling developers that OpenGL was
inherently slow. They decided to
prove that it was at least as fast as
Direct3D — if not faster — with a
demo at Siggraph ‘96. This event got
everyone’s attention, and indeed,
focused it on Microsoft’s implementa-
tion of OpenGL, which was starting to
get pretty fast as well. I took an inter-
est in the issue at this time, and start-
ed reading Usenet posts by knowl-
edgeable 3D engineers from many
different companies. Eventually, I
became convinced not only that
OpenGL wasn’t inherently slow, but
that it was inherently faster than
Direct3D at the limit, for reasons I’ll
detail below. Next, as everyone proba-
bly knows, John Carmack of id
Software released a position statement
in which he made known his choice
of 3D API: OpenGL. He ported Quake
to OpenGL to prove that the API has
what it takes for the highest end game
programming. Finally, Microsoft
announced plans to update Direct3D
to address some of the issues people
were raising.

That’s the history in two paragraphs.
You’ll notice I keep using the term
“inherent” with regards to perfor-
mance. I should describe what I mean
by this. When I say API A is “inherent-
ly faster” than API B, I mean that on
the vast majority of hardware, the dri-
ver and application writers for A will
have more opportunities for optimiza-
tions, and programs running on top of
A will be faster in general, than equiva-
L - M A Y 1 9 9 7 G A M E D E V E L O P E R

B E H I N D T H E S C R E E N

16
lent programs running on B. So, clearly
a bit of hand waving and faith is
involved in saying one API is inherent-
ly faster than another. Still, I think it’s
possible to take knowledge of the prob-
lem domain and make a convincing
case for “inherent speed” based on
things like memory bandwidth and
access patterns, bus speeds, existence
proofs embodied in current high-end
hardware, and so on. The inherent
speed is important, since we don’t
want to run into performance ceilings
imposed by our API.

This argument takes place on many
levels. I’m going to show that OpenGL
is inherently faster than Direct3D.
However, even if they’re just equal in
performance, the conclusion that
OpenGL is superior still holds, as you’ll
see. I’m reminded of one of Dave
Baraff’s dynamics papers that I read
recently. To paraphrase, “We can always
solve this problem because A is never
singular, but even if it is singular we can
solve the problem anyway for this other
reason.”
Performance

L et’s start with performance. The
first and most telling thing about

the performance issue is that no one at
Microsoft (or anywhere, actually) has
been able to give me a single technical
reason why Direct3D is even OpenGL’s
equal in 3D performance, let alone its
better. I’m talking about technical
engineers on the Direct3D team; when
asked point blank for an architectural
reason why Direct3D is (or could be)
inherently faster than OpenGL, they
admit they have none. The only people
who routinely say Direct3D is faster for
games are the Microsoft game evange-
lists, and they’re marketing people, not
technical engineers. Microsoft con-
stantly refers to Direct3D as being
“designed for games,” but when
pressed, no one seems to be able to
come up with how that translates into
actual performance improvements over
OpenGL.

Although this lack of technical
response is pretty damning for
Direct3D, I’ll still cover the specific
technical reasons that OpenGL is an
inherently faster immediate mode API.
If you already agree that OpenGL is
inherently as fast or faster than
Direct3D and you just want to see all
the other overwhelming reasons why
OpenGL is superior, you can skip this
whole next section. It’s going to be
heavy reading — remember, I need to
try to prevent the Jell-O from squeez-
ing out.

The performance comparison has
two aspects. First, we’ll compare
OpenGL to Direct3D execute buffers.
Then, we’ll compare OpenGL to the
new Direct3D DrawPrimitive API.

Execute Buffers

When comparing OpenGL’s out-
put model to Direct3D’s execute

buffers, we must consider the three
types of 3D vertex data: static data,
where the vertices of the model don’t
change relative to one another (like the
fuselage of an airplane or the arm of a

17
hierarchical model); dynamic data,
where most vertices change every frame
(like undulating water, morphing geom-
etry, or a continuous-skinned animating
figure); and finally, partially static data,
which is a mix of the previous two.

STATIC DATA. For static data,
OpenGL’s display lists are clearly better
designed than Direct3D’s execute
buffers, because they’re opaque and
noneditable. By “opaque,” I mean the
application doesn’t know the format of
the display list. By “noneditable,” I
mean once created, the display list’s
internal data cannot be changed. These
two features together make it possible
for driver writers to compile the display
list into a format appropriate for their
hardware and to upload the list onto
the card, even into memory that’s inac-
cessible to the application.

Contrast OpenGL’s display lists with
Direct3D’s execute buffers, which have
a fixed format dictated by Direct3D
and are editable by the application
after being created. These features
make life much harder — if not impos-
sible — for the driver writer who’d like
to optimize for performance. Direct3D
simply does not allow 3D hardware
manufacturers the flexibility they need
to optimize static vertex data render-
ing. In the interest of full disclosure, I
should point out that Direct3D does
have a little known and currently
unimplemented function you can call
to “optimize” the execute buffers and
make them noneditable, but it’s
unclear whether this feature will ever
be implemented. Even if it is eventual-
ly implemented, it still wouldn’t allow
Direct3D’s theoretical performance on
static data to match OpenGL’s theoreti-
cal performance; OpenGL display lists
have other performance-enhancing
features execute buffers do not, such as
the ability to invoke other display lists.

DYNAMIC DATA. 3D hardware accepts
your application’s rendering com-
mands in one of two basic ways: IO or
DMA. In an IO-based architecture, the
3D card memory maps its data registers
and backs them up with a FIFO, allow-
ing the data to be written directly to
the card by the CPU. In DMA-based
hardware, the 3D card starts up an
asynchronous memory transfer to read
the data directly from main memory
without needing the CPU. There are, of
course, hybrids that use both. Each
technique has advantages and disad-
vantages, and which is faster is still an
open topic of research (for example,
the current high-end SGI hardware
switches dynamically between the two,
and in the PC game world, Rendition
prefers DMA and 3Dfx uses IO). Since
there’s no consensus as to which is
best, it’s vitally important that the 3D
API allow either or both, optimally and
without preference.

Consider how OpenGL’s data-for-
matless function-call model handles
dynamically changing vertex data on
both types of 3D hardware. On IO
hardware, the OpenGL model allows
the application to generate the vertex
data and get it out to the accelerator
with as little data conversion and cache
pollution — and as much fine-grained
parallelism — as possible. On DMA

B E H I N D T H E S C R E E N

18
hardware, the model allows the data to
be written directly to the card’s DMA
buffers in exactly the optimal format
for the hardware, without conversion
to or from an intermediate vertex for-
mat. The OpenGL model scales from
rasterization-only hardware (such as
current PC boards) all the way up to
high-end hardware that can accept the
model-space vertices directly.

Direct3D execute buffers, on the
other hand, deny you maximum per-
formance for dynamic vertex data in
one of several ways. On IO-based cards,
the application must write out an exe-
cute buffer full of vertices to main
memory, which will then be parsed by
Direct3D and written to the card. This
means that your vertex data came out
of your application, was reformatted
into a big, bandwidth-munching main
memory buffer, then read out of main
memory, munged by Direct3D, and
sent to the card. This extra layer of
memory traffic and reformatting is
death for high-throughput rendering.
OpenGL sends vertex data either
directly to the hardware or through a
much smaller and cache-friendly sin-
gle-primitive buffer.

Now consider how Direct3D execute
buffers work with DMA-based designs.
The best case here (or perhaps I should
say the “least-worst” case) for Direct3D
is if the 3D hardware can somehow
directly DMA and parse the execute
buffer format. Consider what is
involved in this task alone; the hard-
ware must be able to read all current
and future Direct3D vertex and primi-
tive formats, all commands, and all
flags. Even the Direct3D engineers
admit that this isn’t likely to happen,
and the hardware engineers from the
PC 3D hardware companies I’ve talked
to agree (no hardware that I know of
does this, either). In addition, the
application must cope with execute
buffers that are different sizes on differ-
ent cards, none of which might be the
optimal size for your application’s data.

It gets even worse for Direct3D if the
DMA-based card doesn’t parse the exe-
cute buffers. In this case, the applica-
tion writes out an execute buffer, then
the Direct3D driver must parse the
buffer, write out the data again to the
card’s DMA buffers, and then start the
DMA transfer. This is yet another layer
of memory traffic over and above the
IO-based card example.
G A M E D E V E L O P E R A P R I L - M A Y 1 9 9
Finally, some have proposed making
the execute buffers writable and resi-
dent in the card’s memory. In this case,
the hardware designer not only needs
to handle all the parsing problems
mentioned previously, but also must
design the hardware to allow the CPU
random access to — and even reading
from — the card-resident execute
buffers and to have interlock protec-
tion to prevent modification of the
buffers while they’re being executed.
No one, to my knowledge, has imple-
mented this kind hardware.

It’s clear that for dynamic vertex data,
OpenGL allows much more flexibility
for both the application and the 3D
hardware. This flexibility directly trans-
lates into better memory access charac-
teristics and higher performance. I
should point out that a rasterization-
only card will almost always deal with
dynamic vertex data. This is obvious
with a moment’s thought; as the camera
moves in 3D, the screen coordinates of
all the primitives will change in each
frame. Thus, this section directly applies
to the vast majority of currently avail-
able commodity 3D cards for the PC.

PARTIALLY STATIC DATA. Finally, we
come to partially static vertex data. If I
had to pick the weakest part of my per-
formance argument, it would be here.
If you assume that you only need to
update a few vertices per frame, it
seems that editable execute buffers
could have some benefit. However, this
is only the case if the card can directly
DMA and parse the buffers. If Direct3D
has to parse the buffer itself, then you
might as well have dynamic vertex
data, and then all the previous sec-
tion’s criticisms apply. Also, I’ve yet to
hear a really compelling and uncon-
trived example for partially static ver-
tex data. The more the static vertex
data gets, the easier it is to break up
into multiple, completely static sets
(OpenGL’s display lists support this
mixing of static data by allowing them
to invoke other lists). The less static the
vertex data is, the more it starts to
resemble dynamic vertex data. Add to
that the disadvantage that you still
have the data reformatting issues with
Direct3D, and I’d say it’s at best a wash
for both APIs on this one.

So, I think that’s all she wrote for
execute buffers from a performance per-
spective — OpenGL trounces Direct3D.
I’d be very interested to hear from any-
7

one with any other points I’ve missed,
either for or against execute buffers.

DrawPrimitive

I n some ways, it seems that
Microsoft agrees with my conclu-

sion about execute buffers. The latest
feature to be added to Direct3D is the
DrawPrimitive API. This is a way to
draw triangles without batching them
up in execute buffers. I’ve heard differ-
ent rationalizations for adding this API,
from the performance limits of execute
buffers that I just discussed, to execute
buffers simply being “too hard for peo-
ple to use.” Whatever the reason,
DrawPrimitive isn’t going to avoid all
of Direct3D’s performance problems,
although it will avoid some of the
memory traffic problems associated
with execute buffers. Direct3D will still
have the data reformatting problems,
for example (the API will take
Direct3D’s standard vertex formats), so
your application will still have to read
from its database and convert its ver-
tices into Direct3D structures, and then
pass a pointer to those structures to the
API. One might assume applications
could use Direct3D’s vertex structures
internally and save a conversion, but
this puts onerous constraints on the
application. OpenGL doesn’t have
these format constraints (see the paper
comparing OpenGL to PEX, referenced
below, for more details on this format-
ting issue).

Basically, at this point, Direct3D can
choose between emphasizing execute
buffers and running into the perfor-
mance problems I’ve mentioned, or it
can emphasize DrawPrimitive, in which
case we’re stuck with an immature and
poorly designed clone of OpenGL that’s
missing some of the architectural deci-
sions that make OpenGL fast. Either
way, game developers — and players —
lose as we give away performance and
get nothing in return.

Everything Else

P ersonally, I feel performance scal-
ability should be the primary

issue Microsoft considers when decid-
ing which API to support for game
developers; I think I’ve shown that
OpenGL wins handily in this arena.
However, there are scads of other rea-
sons for choosing OpenGL, even if we
h t t p : / / w w w . g d m a g . c o m

B E H I N D T H E S C R E E N

20

h t

Usenet News
The never-ending Usenet threads are
available on www.dejanews.com.
Search for OpenGL and Direct3D and
then hunker down for a week’s worth of
reading.

John Carmack’s OpenGL Position
Statement
http://redwood.gatsbyhouse.com/
quake/jc122396.txt
If that site is down, you can find it on
DejaNews. You can also find Alex St.
John’s reply to Carmack’s statement on
DejaNews.

SGI’s OpenGL Page, including the 1.1
Specification
http://www.sgi.com/Technology/
OpenGL

A Comparison of OpenGL and PEX
ftp://ftp.sgi.com/opengl/doc/
analysis.ps.Z

Microsoft’s Direct3D Immediate Mode
pages
http://www.microsoft.com/msdn/sdk/
platforms/doc/sdk/directx/src/
directx_400.htm
http://www.microsoft.com/mediadev/
graphics/drawprim.htm

Microsoft’s OpenGL Docs
Microsoft has good OpenGL documenta-
tion on their web site as well, but I can’t
figure out how to get the direct URL.
Basically, go to the following URL and
select the “Documentation” tab, then
“3D Graphics” in the little drop-down
box, then wait for the Java applet to
load. Good luck.
http://www.microsoft.com/msdn/sdk/
default.htm

Brian Hook’s Online 3D Papers
http://www.wksoftware.com/
publications.html

F O R F U R T H E R I N F O
ignore performance. I’ll go into those
now. The reasons are so convincing
that even if OpenGL and Direct3D
were somehow only evenly matched in
performance, OpenGL would still be a
better API for the game industry.

As I said before, no one at Microsoft
was able to give me a technical reason
why Direct3D was better than OpenGL.
That didn’t stop them from giving me
a bunch of nontechnical reasons,
which I’ll address here.

DRIVERS. Currently (February 1997),
there are more Direct3D drivers than
OpenGL drivers available for Windows
95. However, this discrepancy is simply
a matter of time, resources, and evan-
gelism. All major 3D card manufactur-
ers have now committed to doing
OpenGL drivers (glQuake certainly
helped motivate people on this front).
Microsoft could intensify this develop-
ment and shorten the gap by giving
their OpenGL team more resources.

DIRECTX INTEGRATION. Direct3D is,
by definition, integrated with
DirectDraw. Still, nothing says OpenGL
can’t be integrated as well. In fact, by
the time you read this, Microsoft’s
OpenGL-DirectDraw bindings should
be announced and possibly available in
beta. As with drivers, this will be nonis-
sue in a matter of months.

EXTENSIONS. Some people at
Microsoft claim they’ll be able to
extend Direct3D for game developers’
needs faster than OpenGL could be
extended. This is not only incorrect,
it’s backwards. OpenGL has an official
and time-tested extensions mecha-
nism, where vendors can do propri-
etary extensions first, then move them
to multivendor extensions, and finally
move them into the next OpenGL
specification upon ARB approval (of
which Microsoft is a voting member).
Microsoft’s OpenGL team has done
published extensions already, as have
SGI, 3Dlabs, and others. The only way
for a vendor to get extensions into
Direct3D is to beg Microsoft to put
them in — there is no way to do it
themselves. Hardware vendors always
mention this as a major problem with
Direct3D. What’s more, OpenGL’s
structureless interface makes it much
easier to seamlessly integrate exten-
sions into the API; adding multitexture
support to OpenGL is going to be triv-
ial, while adding it to Direct3D is going
to require creating a new vertex type.
t p : / / w w w . g d m a g . c o m
To sum up, Microsoft can extend its
OpenGL just as fast as they can extend
Direct3D. As an added benefit to game
developers, individual vendors can try
out extensions without needing
Microsoft’s approval. This process is
already in place and working in the
OpenGL community. So, if you want
to do a nifty 3Dfx-specific trick in your
next game, you can do it with
OpenGL, but not with Direct3D.
A P R I
OPENGL IS ONLY GOOD FOR SGI
HARDWARE. I used to believe this
myself, but I did a little checking. It
turns out that people have done
OpenGL (or its predecessor, IrisGL) on
just about every type of hardware
imaginable, from span renderers to
full-geometry pipelines. Furthermore,
consider the number of different
OpenGL vendors. Check out glQuake
running on a 3Dfx or an Intergraph.
The more you think about it, the more
you’ll realize Direct3D’s exposed ver-
tex formats and execute buffers dictate
the design of the hardware much more
so than does OpenGL. That means
there’s less room for innovation by
hardware designers, and again, we
developers lose.

OPENGL HAS NO CAPS BITS. Direct3D
has a mechanism by which you can
test whether a driver supports certain
features, like a Z-buffer or alpha blend-
ing (you test capabilities bits, or caps
bits). In contrast, OpenGL requires that
all features be implemented, whether
in hardware or emulated. At first
glance, it seems that Direct3D has the
advantage here, but that’s not the case.
First, caps bits can’t express the rich-
ness of 3D hardware. For example, a
card that can Z-buffer and have desti-
nation alpha — but not both at the
same time — is a real possibility, but
you can’t express that in caps bits.
Second, just because a caps bit says a
feature is supported doesn’t mean you
want to use it, since as we’ve all seen
on this first generation of hardware, it
might be slower than software (or it
might not even actually be supported,
given an unscrupulous vendor). The
only true solution to this problem is to
profile each feature at installation time
and give the user a choice. You can do
this equally well on either OpenGL or
Direct3D.

NonDebatables

I think I’ve covered most of the
debatable points. In addition, there

are some points going for OpenGL that
no one debates.

EASE OF USE AND ELEGANCE. No one
argues with the fact that OpenGL is eas-
ier to use and more elegant than
Direct3D. This was the central thesis of
Carmack’s position statement. He feels
usability is even more important than
the performance of the API. For more of
L - M A Y 1 9 9 7 G A M E D E V E L O P E R

21
his opinion, you should read his state-
ment for yourself. It’s in the references.

SPECIFICATION AND CONFORMANCE.
It’s also inarguable that OpenGL is
better specified. You can read this
specification on the Web; again, check
the references. The spec is based on
years of 3D experience, and it does a
great job of balancing specificity and
ambiguity, allowing hardware manu-
facturers room to innovate while pro-
viding software developers with a con-
sistent, high-performance API. In
addition, each OpenGL implementa-
tion must pass a battery of confor-
mance tests. Direct3D has no compa-
rable specification, and no are
conformance tests available as of this
writing.

DOCUMENTATION AND SAMPLES.
OpenGL is also better documented,
with many good books about it avail-
able in stores. The few Direct3D books
available only cover Retained Mode in
any detail. There are tons of well-writ-
ten OpenGL samples available on the
Web, also in contrast to Direct3D.
Summary

C an’t Microsoft fix these problems?
Of course they can. They can con-

tinue to change and patch Direct3D
until, as Carmack says, it “sucks less.”
However, it’ll take them years to reach
the level of polish and performance
that OpenGL has right now; why
should we developers have to put up
with it? For the same effort, Microsoft
can give their OpenGL team more
resources to make OpenGL even better,
and the whole industry benefits and
advances.

Can’t we have both APIs and let
them compete for mindshare? Sure, but
currently the Microsoft OpenGL team is
prohibited from evangelizing OpenGL
to game developers because that would
run counter to the current “strategy.”
That’s not fair technical competition.
Also, I showed a draft of this article to
engineers from several top-echelon PC
3D hardware manufacturers to get their
technical review; they all said they’d
say the same thing if they weren’t
afraid of Microsoft and the repercus-
sions it would cause for their compa-
nies. Again, this is not competition.
And again, we developers lose. As a
final reason for not having both APIs,
hardware vendors are forced to spread
themselves thin to support more than
one API, and driver support suffers.

So, for all these reasons — for the
good of the game development indus-
try — I urge Microsoft to cancel
Direct3D Immediate Mode and fully
embrace OpenGL as the immediate
mode game development API of
choice. I also urge game developers to
take a closer look at Microsoft’s
OpenGL. If you like what you see, use
it. Remember to share your opinion
with Microsoft and 3D hardware man-
ufacturers. Finally, if you’re a 3D hard-
ware manufacturer, get your OpenGL
drivers done as soon as possible.

Chris Hecker usually inserts a funny
bio here at the end, but he feels strongly
enough about this topic that he’ll
refrain for an issue. He can be reached
at checker@bix.com.

Please use checker@d6.com.

