
Attention:

This material is copyright  1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

A
s you can see from the title,
this article is not “Perspective
Texture Mapping, Part IV,”
the continuation of our epic
perspective texture mapping
series. Don’t panic, I’m not
breaking my promise to deliv-
er a wicked fast perspective

texture mapper, but to break up the
series a bit I thought I’d insert a non-
texture mapping article here in the mid-
dle (although the topic is definitely
applicable to texture mapping, as you’ll
see). We’ll resume with Part IV next
issue.

This time through, we’re going to
discuss memory bandwidth. Plainly stat-
ed, memory bandwidth is a measure of
how much memory you can read and or
write in a given amount of time.

From that description, it should
be clear that memory bandwidth
affects every kind of game on every
platform, from scroll ing platform
games on an 8-bit Nintendo or Atari
2600 system to high-end military sim-
ulators that cost millions of dollars.
Memory bandwidth governs how many
sprites the hardware in the older con-
soles can move around, and how many
polygons can be textured per second in
hardware on the newest machines or in
software on the PC.

In fact, an oft-cited goal of PC
graphics programmers is to “get your
texture mapper running at memory
bandwidth,” because there’s not much
more you can do to increase its speed
after that. To get a tad flowery, memory
bandwidth can be an open door or a
brick wall. It all depends on how much
of it you’ve got.

Lies, Damn Lies, and
Bandwidth Numbers
On today’s machines, we usually mea-
sure memory bandwidth in megabytes
per second (MB/s), but you’ll sometimes
see bytes per second, dwords (a dword is
four bytes in this article) per second, and
so on. If you’re looking at a bunch of
memory bandwidth numbers, it’s obvi-
ously important to know which measure-
ment units they’re in.

Like most statistics, the bandwidth
numbers themselves aren’t enough to tell
the whole story, and you need to know
exactly how the numbers were generated
for a specific machine to give them
meaning. For example, I could tell you
the laptop on which I’m typing right now
gets 42 MB/s, but you really aren’t any
more knowledgeable than before because
you don’t know if I mean read band-
width, write bandwidth, copy bandwidth,
sequential or random reads or writes, or
any combination thereof. All these para-
meters can make a big difference inwhat
a bandwidth number really means.

In fact, it’s rare that any general
bandwidth number will mean anything in
the context of your specific game. I’m
going to talk about various things that can
affect your game’s memory bandwidth,
techniques for measuring that bandwidth,
and pitfalls you’ll encounter along the way.

Pyramid Power
First, we need a one-minute refresher on
how modern CPUs and motherboards
work. I’m certainly no hardware engi-
neer, so we’ll limit our discussion to how
the software sees the hardware.

Throughout computer history,
there’s always been a pyramid diagram

Memory
Miscellanea

Don‘t worry, perspec-

tive texture mapping is

alive and well. But this

month, Chris Hecker

takes a break from his

series on texture

mapping to explore the

nuances of

memory bandwidth in

game programming.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 15

that describes the speed of the compo-
nent vs. how much of that component
you’re likely to have in your system (usu-
ally because faster components are more
expensive). Figure 1 shows this diagram
for memory components.

At the top of Figure 1 we have the
CPU registers, which usually take a single
cycle to access and are the most flexible of
all types of memory, but are pretty scarce
(Intel x86 processors have only eight gen-
eral purpose registers, each of which holds
four bytes, while most new processors like
the PowerPC have around 32—all the par-
enthetical numbers in this paragraph are
estimates and will vary in practice). Below
the registers, we have the on-chip cache
memory, sometimes called the level 1
cache. This is usually a small amount (8 to
32KB or so) of fast memory with access
times slightly slower than registers. Cache
memory is a little less flexible than regis-
ters, as well. Most CPU architectures don’t
let you add a number in the cache directly
to another number in the cache without
using the registers for temporary storage.

On the next rung down, we have the
off-chip level 2 cache, which usually has
more storage space (256KB to 1MB), but
is much slower than the on-chip cache,
generally on the order of five times slower
or more.

Second to last in our diagram, we
have main memory—of which there’s
usually a relatively large amount (4 to
32MB). As you’d expect, it’s even slower
than any of the memories above it. Final-
ly, we end up with the hard disk, which
has oodles of storage (well, okay, my hard
disk sometimes has less space free than I
have main memory, but it still has more
raw storage!) if you’re willing to pay for
the access time and transfer rates. CD-
ROMs and tape drives would be below
hard disks if we put them in the dia-
grams, because they’re cheaper (and
slower) per megabyte.

The most interesting thing about
Figure 1 is that it holds for almost every
machine architecture, from Commodore
64s to Crays. On the lowest end, you
might not have caches, and at the higher
end you might have more layers, but the
speed vs. cost ratios still stand.

With that refresher, let’s get to the
hints, tips, and techniques for determin-
ing the memory bandwidth for your
game, so you can strive to achieve it.

What’s Your
Access Pattern?
As I mentioned, a single number doesn’t
tell the whole story about memory band-
width. In fact, there are zillions of differ-

ent kinds of memory bandwidth, each
different because the access pattern used
to generate the numbers is different. The
access pattern is the way the application
moves the memory around, and there are
as many different types as there are pro-
grams. Three general categories that are
important, but by no means form a com-
plete list, are sequential copy bandwidth,
sequential write bandwidth, and random
read-sequential write bandwidth.

Sequential copy bandwidth is the
number that applies when you’re copying
a block of memory from one place to
another—to copy a new piece of digital
audio into the play buffer, for example.
Sequential write bandwidth is what you
see when filling a rectangle or polygon,
zeroing an array, or anything else where
you’re writing a single value or a value
that’s generated using instructions (as
opposed to read from a source) to a desti-
nation. Finally, random read-sequential
write bandwidth is what you see when
texture mapping, where your source loca-
tions are fairly randomly distributed, but
you’re usually writing a scanline at a time
to the destination.

From these descriptions, you can
easily come up with other kinds of band-
widths and situations in which they’d
arise. You might find multiple reads and
a single write interesting if you’re mixing
digital audio or alpha blending sprites.
Likewise, a single read and multiple
writes might be your thing if you’re
stretching an image. The key is to figure
out which type of bandwidth is most
appropriate to your application and mea-
sure it.

It’s clear that any useful and inter-
esting application is going to do more
than just copy bits all day, but memory
bandwidth gives a good upper bound on
your performance. In other words, even
if you were the best optimizer on earth,
you still wouldn’t be able to get your
code faster than memory bandwidth if
you need to move those bits around.
This may seem like a limitation, and it
is, but you can also look at it as an
opportunity. If you can figure out a way
to reduce your memory bandwidth
requirements by redesigning your algo-
rithm or possibly by changing your

B E H I N D T H E S C R E E N

16 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 1. Component Cost vs. Amount

Decreasing�
cost per�
megabyte

Hard Disk

Registers

On-chip Cache (L1)

Off-chip Cache (L2)

Main Memory

access pattern you can open up new pos-
sibilities for optimization.

An Accessible Example
For example, if you were writing a solid
polygon rasterizer, you could measure
sequential write bandwidth and compare
it to the fill rate you get through your
rasterizer. The difference is your over-
head above memory bandwidth. Your
goal is to minimize this overhead or, if
possible, cheat somehow so you get the
same effect on the screen but aren’t
bound by the same memory bandwidth
limitations.

Let’s say you have the world’s fastest
90-degree bitmap rotator; you can take a
bitmap and rotate it 90 degrees at memo-
ry bandwidth on your machine—you’re
very proud of this code. You know it
works at memory bandwidth because you
measured it without any instructions
except the copies in the inner loop and
got the same bandwidth number when
you added your rotator code. Let’s also
say your code is “destination-centric,”
that is, it scans horizontally in the desti-
nation and therefore it scans vertically in
the source to accomplish the rotation. Of
course, you measured memory bandwidth
doing the same thing, so let’s call this
access pattern vertical read-sequential
write. Since we’re running up against this
memory bandwidth limitation, how can
we restructure the algorithm to have a
different limitation?

It’s immediately apparent that you
should measure sequential read-vertical
write, which will accomplish the same
rotation, but might be a different speed.
Also, another possibility is to spend a lit-
tle memory and pre-rotate your bitmaps,
so your access pattern is sequential copy.
Will either of these be faster? I don’t
know, and we can’t say with certainty
until we’ve timed it. My hunch is that
sequential copy will be the fastest in
terms of pure bandwidth because it’s
probably the access pattern for which the
memory subsystem was optimized, but
it’s just that, a hunch. It’s entirely possi-
ble the extra memory overhead from pre-
rotated bitmaps would make the overall
code slower because of paging.

The real solution, if this is a bottle-

neck in your game’s run-time speed (and
you shouldn’t even be bothering to mea-
sure this stuff if it isn’t a bottleneck), is to

profile the various techniques at startup
and have your game self-configure to use
the fastest possible pattern for the given
machine.

It may seem like I’m being wishy-
washy by not just declaring a single
access pattern the fastest, but we’ve got
far too many variables to do so. The
problem is compounded by the number
of different hardware architectures out
there, so what’s fastest on your machine
might not be fastest on mine and vice
versa. The best we can do is have a list of
things to look out for when we’re mea-

suring bandwidth. Cache effects would
definitely be at the top of this list.

Understand the Cache
The processor cache is usually an object
of great fear, wonder, and misunder-
standing. A friend of mine named Terje
Mathisen says, “All programming can be
thought of as an exercise in caching.”
Although Terje isn’t talking specifically
about the processor cache, this is a rule to
live by when you’re trying to optimize on
modern processors. If we apply this idea
to the processor cache and memory
bandwidth, it means, “Figure out how to
put your important data in the cache and
keep it there.” This may seem obvious,
but keeping your data in the cache is
more difficult than you might think.

Before we bother getting into this,
what difference does it make? Well, on
my laptop, the speed difference between
reading from the on-chip cache and
reading from sequential uncached memo-
ry is tenfold—and this isn’t even the
whole story. I’m reading sequentially in
this example, so at least some of the reads
are cached for reasons I’ll explain shortly.
If I ensure that all the reads are uncached
by reading pseudo-randomly, the pro-
gram reads from the cache about 30
times faster than from main memory.
You can do a lot in 30 cycles on a mod-
ern processor, so I’d rather not spend
them waiting on memory.

I’m going to assume you know gen-
erally what a cache is and how it works, so
the only high-level description I’ll give is
this: the cache stores frequently accessed
data in fast on-chip memory, so when you
reference it the chip doesn’t have to go out
to the memory bus to fetch your request.

Caches are broken up into cache
lines, which are usually 16 or 32 bytes
long, and the processor reads in an entire
cache line from memory when a cache
miss occurs. These cache lines are aligned
on address boundaries that correspond to
their length, so 16-byte cache lines are
aligned on 16-byte boundaries, for exam-
ple (addresses ending in 0 hexadecimal).
This is why my previous sequential reads
were partially cached. Assuming a 16-
byte cache line, every fourth dword I read
in my test brought in another cache line,

B E H I N D T H E S C R E E N

18 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

What‘s fastest on

your machine

might not be

fastest on mine.

The best we can

do is have a list of

things to look for

when we‘re mea-

suring bandwidth.

and the next three dwords were read
from the cache’s fast memory. The use of
cache lines also means that if you’re refer-
encing two bytes at addresses that differ
by more than a cache line (or if there’s a
cache line boundary between them) you’ll
be using two lines, even if you’re only
accessing those two bytes.

Life in the cache gets even worse
when we delve deeper into its behavior.
Most modern caches are N-way set asso-
ciative for some small integer N, usually
2 or 4. A cache set is a group of N cache
lines, so a two-way set associative cache
has a bunch of sets, each containing two
cache lines. You can tell how many sets
there are by taking the size of the cache
in bytes, dividing by the number of bytes
per line to get the total number of lines,
and then dividing by N for your cache to
get the total number of sets. For example,
the Pentium has 8KB of two-way set
associative data cache with 32-byte cache
lines, so 8KB / 32 bytes / 2 lines per set =
128 sets.

The cache translates a memory
address into a cache line address by using
the lowest bits for the intra-line address,
the next few bits for the set address, and
the remaining high bits for the cache tag.
Figure 2 shows the breakdown for the
Pentium. Because there are 32 bytes in a
cache line, the lower five bits are used for
the intra-cache line address, and the next
seven bits give us the 128 sets we calculat-
ed previously. Which line a given address
uses in its set is up to a replacement algo-
rithm (usually least recently used or an
algorithm close to it) based on the cache
tag bits. In other words, every address
that contains the same set address bits
will map to the same set, and all those
addresses must share the lines in that set.

This is where the replacement algo-
rithm comes in. If all the lines in the set
are currently full and none of the tags
matches the requested address, then one
of the currently cached lines needs to be
replaced by the current requested line.
For example, on the Pentium only two of
the many possible cache lines (20 bits
worth of lines because bits 12-31 make
up the tag—that’s 1,048,576 possible
lines!) for a given set can be in the cache
at the same time.

You can see why this works well in
the general case because referenced
addresses are likely to be near each
other—a phenomenon called locality of
reference—so they’ll have different set
addresses. The set architecture allows for
some addresses to be not-so-near each
other because it lets very different
addresses with the same low bits map to
N different cache lines (in contrast, a
cache architecture called direct mapped
has no sets, so each address with the
same low bits shares a single cache line).

However, in certain cases this kind of
cache architecture can really screw you up.
For example, let’s say you’re reading verti-
cal strips from a bitmap like the bitmap
rotator we discussed previously—down
one vertical scanline, then down the next,
and so on. The width of your bitmap will

dictate how much of the cache you end up
using. If your bitmap is 256 bytes wide, a
single increment vertically will step bit 8—
and never any bits below bit 8—in your
address. If you compare that with the
Pentium’s cache address layout in Figure
2, you’ll notice that you’re only using four
bits of your possible seven bits of set
address. This means that instead of using
all 128 sets, you’re only using 16 of them
or only 1/8 of your total cache! The star-
tling implication of this is the next hori-
zontal byte from the first scanline will not
be in the cache when you get back up
there if you’ve gone farther than 32 scan
lines (16 sets x 2 lines per set) because it’s
been pushed out of its set by another line.

Assume Nothing
What can you do about this sort of
thing? Well, first you need to realize

when it is happening in your code. To
do this, you need to get good at profil-
ing. Profiling at this level doesn’t mean
just running the code profiler that comes
with your compiler and examining the
results, it means figuring out exactly
where your code is spending its time in
the inner loop. You can definitely use
the high level profiler to find the inner
loop in the first place, but once you’ve
found it, if you want to max it out and
really pin down why it’s taking the time
it is, you’re going to need to get down
and dirty with a very accurate timer (per-
sonally, I use timeGetTime or QueryPerfor-
manceCounter on Windows, but any accu-
rate timer will work) and a knowledge of
assembly language.

Before continuing I should stress
that this kind of profiling and optimiza-

tion takes a very long time, so you should
make absolutely sure you’re applying that
time to the right part of your code. In a
game, there are probably 10 lines of code
in the entire project that might need this
sort of attention, and if you’re going to
spend a week looking at them you had
better make sure they’re the right 10 lines.

Michael Abrash’s phrase, “Assume
nothing!” and its corollary, “Time every-
thing,” are words to live by in this neck of
the woods. Abrash is the master of this
sort of optimizing, so you should definit-
ley read his book Zen of Code Optimiza-
tion (Coriolis, 1994). As a bonus, the
disk that accopanies the book comes with
a very accurate timer designed specifically
for this in-depth profiling.

While I was writing this column,
the need for this very kind of profiling
came up. I was gathering bandwidth

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • OCTOBER/NOVEMBER 1995

Figure 2. Pentium Cache Addressing

Address Bits

31 12 11 5 4 0

Cache tag Set address
Intra-line

address

statistics for various access patterns on
my 486 laptop and I was trying to time
cached reads. I know from both experi-
ence and the 486 manual that a read
from the cache is a single cycle, but I
couldn’t seem to convince my timing
program of this fact. It kept returning
around 1.5 cycles per read, and when
you’re timing at this level that’s 50%
off. My test program had an unrolled
loop of a couple of hundred reads, and
then I looped back to the top a bunch
of times. I was very careful not to
unroll my loop so much that it blew out
the code cache, so I simply couldn’t
figure out what was going on. I timed
other single cycle instructions with the
same timing harness (using a millisec-
ond timer and looping a lot), and they
returned reasonable times, like 1.02
cycles, but my reads kept returning 1.5.
If I stuck a nop in between the unrolled
reads I got the expected two cycles, one
for the read and one for the nop. I
stared at the code, trying to find an
address generation interlock, (AGI—

Intel-speak for a type of pipeline stall),
but there weren’t any.

Finally it hit me. I remembered that
if you’re continuously reading from
cached memory without allowing even a
single free memory cycle for prefetching
instructions, the 486 will stall your code
to fill the prefetch queue. Eureka! I veri-
fied this was the culprit by changing the
number of consecutive reads and got the
expected one cycle per read. I also looked
it up in the 486 Programmer’s Reference
Manual from Intel, and the stall was list-
ed there among the others.

Time to Cache Out
As you can see, figuring out where every
cycle is going in your inner loop, espe-
cially when there are strange effects
brought on by your memory access pat-
tern, is very difficult and time consum-
ing. I highly recommend reading and
rereading the manual for your processor
before you try to do this. Also, always
test your timing program with known
inputs so you can verify that it works;

Heisenberg is alive and well at this level.
I haven’t covered video memory and

its associated bandwidth weirdnesses at
all. Nor have I discussed processor write
buffers, write-back versus write-through
caches, processors that don’t write allocate
cache lines (like the Pentium), new trends
in memory that affect the bandwidth
numbers (like EDO memory, RAMBUS,
and SDRAM), groovy new cache/access
pattern debugging instructions (like
RDMSR on the Pentium), and much
more. Hopefully this article gives you
enough background and forewarning
about the strangeness you’ll encounter
that when it’s time to max out your inner
loop, memory bandwidth won’t be the
mystery it can be for the unprepared. ■

Chris Hecker wonders why five-year-
old workstations with incredibly slow
CPUS still have better memory bandwidth
than today’s top-of-the-line PCs. You can
commiserate with him at checker@bix.com.

GAME DEVELOPER • OCTOBER/NOVEMBER 1995 21

Please use checker@d6.com.

